Use of facile mechanochemical method to functionalize carbon nanofibers with nanostructured polyaniline and their electrochemical capacitance

نویسندگان

  • Xusheng Du
  • Hong-Yuan Liu
  • Guipeng Cai
  • Yiu-Wing Mai
  • Avinash Baji
چکیده

A facile approach to functionalize carbon nanofibers [CNFs] with nanostructured polyaniline was developed via in situ mechanochemical polymerization of polyaniline in the presence of chemically treated CNFs. The nanostructured polyaniline grafting on the CNF was mainly in a form of branched nanofibers as well as rough nanolayers. The good dispersibility and processability of the hybrid nanocomposite could be attributed to its overall nanostructure which enhanced its accessibility to the electrolyte. The mechanochemical oxidation polymerization was believed to be related to the strong Lewis acid characteristic of FeCl3 and the Lewis base characteristic of aniline. The growth mechanism of the hierarchical structured nanofibers was also discussed. After functionalization with the nanostructured polyaniline, the hybrid polyaniline/CNF composite showed an enhanced specific capacitance, which might be related to its hierarchical nanostructure and the interaction between the aromatic polyaniline molecules and the CNFs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polyaniline nanofibers: a unique polymer nanostructure for versatile applications.

Known for more than 150 years, polyaniline is the oldest and potentially one of the most useful conducting polymers because of its facile synthesis, environmental stability, and simple acid/base doping/dedoping chemistry. Because a nanoform of this polymer could offer new properties or enhanced performance, nanostructured polyaniline has attracted a great deal of interest during the past few ye...

متن کامل

Hydrothermal synthesis of nanostructured graphene/polyaniline composites as high-capacitance electrode materials for supercapacitors

As known to all, hydrothermal synthesis is a powerful technique for preparing inorganic and organic materials or composites with different architectures. In this reports, by controlling hydrothermal conditions, nanostructured polyaniline (PANi) in different morphologies were composited with graphene sheets (GNS) and used as electrode materials of supercapacitors. Specifically, ultrathin PANi la...

متن کامل

Facile Synthesis of Polyaniline Nanotubes with Square Capillary Using Urea as Template

Polyaniline nanotubes were successfully synthesized by a facile in situ chemical oxidative polymerization method using urea as soft template. When the urea/aniline molar ratio is 3:1, the as-prepared nanotubular polyaniline (PANI-3) shows regular and uniform square capillaries, which provides a high electrode/electrolyte contact, easy ion diffusion and enhanced electroactive regions during the ...

متن کامل

Controllable synthesis of MnO2/polyaniline nanocomposite and its electrochemical capacitive property

Polyaniline (PANI) and MnO2/PANI composites are simply fabricated by one-step interfacial polymerization. The morphologies and components of MnO2/PANI composites are modulated by changing the pH of the solution. Formation procedure and capacitive property of the products are investigated by XRD, FTIR, TEM, and electrochemical techniques. We demonstrate that MnO2 as an intermedia material plays ...

متن کامل

AFRL-AFOSR-JP-TR-2016-0057 Hierarchical and Multifunctional Three-dimensional Network of Carbon Nanotubes for Supercapacitor and Strain Sensor Applications

Polyaniline (PANI) was successfully combined with 3DNC as supercapacitor electrodes by two commonly used method: chemical polymerization (CP) and electrochemical deposition (ECD). The combination of PANI and the 3DNC led to a fascinating result, showing high specific capacitance of 615 F/g (CP) and 1120 F/g (ECD) at the current density of 10 A/g. Both electrodes showed stable electrochemical pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012